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Abstract—In recent years, there has been a tremendous interest
in using generative AI, and particularly large language models
(LLMs) in software engineering; indeed there are now several
commercially available tools, and many large companies also
have created proprietary ML-based tools for their own software
engineers. While the use of ML for common tasks such as code
completion is available in commodity tools, there is a growing
interest in application of LLMs for more bespoke purposes. One
such purpose is code migration.

This article is an experience report on using LLMs for code
migrations at Google. It is not a research study, in the sense
that we do not carry out comparisons against other approaches
or evaluate research questions/hypotheses. Rather, we share
our experiences in applying LLM-based code migration in an
enterprise context across a range of migration cases, in the hope
that other industry practitioners will find our insights useful.
Many of these learnings apply to any application of ML in
software engineering. We see evidence that the use of LLMs
can reduce the time needed for migrations significantly, and can
reduce barriers to get started and complete migration programs.

I. INTRODUCTION

Google Product Areas (PAs) such as Ads, Search,
Workspace and YouTube are mature software development
organizations that perhaps resemble many Fortune 500 com-
panies in terms of software development challenges:

• Mature (20+ years), large code bases.
• Need to keep up with business demands for agility in a

competitive external environment.
• Need to maintain code and use new frameworks etc. to

ascertain current feature demands.
• Software development quality and agility are differentia-

tors in the market, even though what these PAs offer in
their markets is not a software product as such.

Over the years, Google as a whole has adopted software
engineering principles – monorepo, analysis tools, a rigorous
code review, CI/CD etc. – that have served all PAs well. See
[26].

In the era of LLMs, the practice of software engineering is
going through an industry-wide transformation. This profound
change is taking place at Google as well. Google uses AI
technologies in software engineering internally at two levels:

First is the generic AI-based tooling for software develop-
ment that is designed for all Googlers across all PAs. These
technologies – built by Google for Google – include code
completion, code review, question answering, and so on. The

generic AI-based development tools have been very successful
at Google (see Section II) as well as in the external community,
thanks to the work of Github and other companies [19, 7].
However, by necessity the IDE-based tooling is designed for
“mass market” use, where the UX is paramount and typically,
the value added per interaction is small but it happens many
times (e.g. code completion). This is the space the mass market
tools / generic tools optimize for. We have previously talked
about this in blog posts and papers [23, 3, 11].

Second is bespoke solutions for each PA. Examples include
specific code migrations, code efficiency optimization, and test
generation tasks, where we have effectively used LLMs in
custom (or “bespoke”) ways. As opposed to mass market, or
generic tools, the number of interactions may be smaller for
bespoke tools, but the complexity of each interaction is often
higher. Furthermore, the emphasis here is often to accomplish
an end-to-end task rather than just being an IDE convenience.
For instance, in code migration at scale, the need is to be able
to perform repo-level change correctly and consistently. These
need custom solutions. They might use the same primitives as
mass market tools, but the goals are different.

This article focuses on such bespoke solutions, specifically
on the migration workloads that we see from Google product
units. We describe the setting of migration projects in Google
PAs, and the challenges we address in making LLM-based
code migrations deliver the intended business value. The
measure of success we adopt is whether there is at least a 50%
acceleration in task completion rate in an ongoing project (see
Section III.)

Section IV in the paper covers a case study from the Google
Ads PA. The Google Ads business is one of the largest in the
world and is built on a code base of 500+M lines of code. Ads
code base uses several IDs that were 32 bits, but need to be
converted to 64 bits to avoid negative rollover scenarios that
could cause outages. With the use of the LLM-based approach
(see details in Section IV), we are on track to achieve our
migration targets, surpassing the success metric of 50% or
better acceleration.

Building on the success of the Ads experience, the number
of different migration initiatives around Google has been
increasing. In the paper, we discuss three other distinct mi-
grations problems arising from different Google PAs:

• JUnit3 to JUnit4 migration (Section V)
• Joda time to Java time migration (Section VI)
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• Cleanup of experimental flags (Section VII)

While the above are a good representative set, we have
worked on several additional migrations: in fact, through 2024
the number of changelists (similar to pull requests in Git)
from migration efforts across Ads and other product areas
has steadily increased (see Fig 1) and the types of changes
supported has expanded significantly. This has created an
ecosystem that allows the teams to employ economies of scale,
slotting new migrations into already proven workflows.

Fig. 1. Landed changelists of AI-powered migrations for the first 3 quarters
for 2024.

Not only did the use of LLMs accelerate these migrations,
from an organizational viewpoint, we have been able to com-
plete complex migrations that were stalled for several years
and required continued attention from the business. We have
completed efforts that spanned several teams using a handful
of engineers and saved the business hundreds of engineers
worth of work.

Achieving success in LLM-based code migration is not
straightforward. The use of LLMs alone through simple
prompting is not sufficient for anything but the simplest of
migrations. Instead, as we found through our journeys, and
as described in the case studies in this paper, a combination
of AST-based techniques, heuristics, and LLMs are needed to
achieve success. Moreover, rolling out the changes in a safe
way to avoid costly regressions is also important.

Although each migration is different, and requires bespoke
work, they often follow similar patterns. The cases described
in this paper show a set of such patterns that, we believe, will
continue to appear in future migration projects. We believe
that the techniques described are not Google-specific and we
expect that they can be applied to any LLM-powered code
migration at large enterprises.

To help with the challenges of migrations and to leverage
the commonality that we see across the many cases, we have
developed a common toolkit (Sec IV-2) that we used for
the code changes and the techniques to find the relevant files
to change. The project-specific customization comes from the
LLM prompts used, as well as in the validation steps for the
code changes and the review and rollout phases, which are
still largely human-driven.

The rest of the paper is organized as follows: Section II
briefly recaps the generic code AI technologies that we use
at Google. Section III talks about the bespoke technologies,
focusing on code migration. Following this section, there
are four sections, each describing a different code migration

case study. Finally, Section VIII discusses our learning and
takeaways from our experience.

II. GENERIC AI TOOLS IN GOOGLE INTERNAL SOFTWARE
DEVELOPMENT

Ever since the advent of powerful transformer-based mod-
els, we started exploring how to apply LLMs to software
development. LLM-based inline code completion is the most
popular application of AI applied to software development:
it is a natural application of LLM technology to use the code
itself as training data. The UX feels natural to developers since
word-level autocomplete has been a core feature of IDEs for
many years. Also, it’s possible to use a rough measure of
impact, e.g., the percentage of new characters written by AI.
For these reasons and more, it made sense for this application
of LLMs to be the first to deploy.

We have seen continued fast growth similar to other en-
terprise contexts [7], with an acceptance rate by software
engineers of 38% assisting in the completion of 67% of code
characters [3], defined as the number of accepted characters
from AI-based suggestions divided by the sum of manually
typed characters and accepted characters from AI-based sug-
gestions. In other words, the amount of characters in the code
that are completed with AI-based assistance is now higher
than manually typed by developers. While developers still need
to spend time reviewing suggestions, they have more time to
focus on code design.

Key improvements came from both the models — larger
models with improved coding capabilities, heuristics for con-
structing the context provided to the model, as well as tuning
models on usage logs containing acceptances, rejections and
corrections — and the UX. This cycle is essential for learning
from practical behavior, rather than synthetic formulations.

Fig. 2. Improving AI-based features in coding tools (e.g., in the IDE) with
historical high quality data across tools and with usage data capturing user
preferences and needs.

We use our extensive and high quality logs of internal
software engineering activities across multiple tools, which we
have curated over many years. This data, for example, enables
us to represent fine-grained code edits, build outcomes, edits
to resolve build issues, code copy-paste actions, fixes of pasted
code [9], code reviews, edits to fix reviewer issues, and change
submissions to a repository. The training data is an aligned
corpus of code with task-specific annotations in input as well
as in output. The design of the data collection process, the
shape of the training data, and the model that is trained on
this data was described in our DIDACT [17] blog. We continue
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to explore these powerful datasets with newer generations of
foundation models available to us (discussed more below).

Our next significant deployments were resolving code re-
view comments [10] (>8% of which are now addressed with
AI-based assistance) and automatically adapting pasted code
[9] to the surrounding context (now responsible for ∼2% of
code in the IDE). Further deployments include instructing the
IDE to perform code edits with natural language and predicting
fixes to build failures [15]. Other applications, e.g., predicting
tips for code readability [25] following a similar pattern are
also possible.

Together, these deployed applications have been successful,
highly-used applications at Google, with measurable impact
on productivity in a real, industrial context.

Fig. 3. A demonstration of how a variety of AI-based features can work
together to assist with coding in the IDE. top: code completion, middle:
adjusting copy-pasted code to the context, bottom: code edits based on natural
language instructions. See our blog for more details [3].

III. BESPOKE USE OF LLMS FOR CODE MIGRATION

In this section we describe some of the LLM-powered
efforts that Google implemented to address lingering technical
debt and code migrations within several PAs.

The need for code migration is not new at Google (and
neither elsewhere.) At Google’s monorepo scale, special in-
frastructure for large-scale changes [26] was, and still is used.
This has allowed huge migrations like programming language
version changes, API deprecations etc. at a fraction of the cost
of doing them manually. That infrastructure uses static analysis
and tools like Kythe [16], Code Search [26] and ClangMR [5].

However, for the kinds of code migrations that we wish
to accomplish, these “deterministic” code change solutions
have not proven to be quite as effective. This is because
the contextual clues and the actual changes to be made have
quite a bit of variance, and these are difficult to write out
in a deterministic code transformation pass. This is exactly
where modern LLMs are very effective, and in practice, offer
a lower barrier to entry compared to devising other customized
program transformation systems, such as based on program
synthesis. Our goal is to find opportunities where LLMs will
provide additional value by not requiring hard to maintain AST
(abstract syntax trees)-based transformations, and at the same
time, have scale of application that justifies the work. While
AST-based techniques offer deterministic change generation,
the cases we want to tackle can span complex code constructs
that would be hard to implement as ASTs to cover all cases.

At a high level, the use of an LLM prompt to make a task-
specific code change might look like the following:

You are a software engineer tasked to do {TASK}.
Here are the rules to accomplish this:
1. First rule
2. Second rule
...

Where rule refers to an informal description of what needs
to be accomplished; as opposed to a precise AST-level pattern
matching and transformation.

We use LLM prompting to build common workflows that
contain bespoke, customised parts—per-task instructions to the
model itself—as well as some of the sub-steps in the code
migration like the file discovery and validations. This approach
allows us to quickly onboard new use cases, because we built
a palette of reusable sub-steps which we can combine and
adapt.

We emphasize that LLMs are only one part of the complete
solution, which includes some AST and symbol-based tech-
niques, and some purely process issues such as change rollout.
The LLM role is focused on the edit generation. The parts
where we need to identify locations at which to make changes,
and where we need to validate that the right thing took place,
are handled mostly using deterministic AST techniques with a
few cases supported by the LLM as well. In Fig 4 we provide
a conceptual diagram of the step-by-step process. After the
opportunities for the change are discovered, they are generated
using the LLM and a loop begins that iterates on tests and other
validations until the changes are deemed good. Humans review
the LLM-generated code the same way as any other code and
they add any missing tests to cover the changed lines. The final
step of landing (executing them in a production environment)
the changes depends on the product they are part of.

As mentioned in Section I, for each migration described we
have defined success as AI saving at least 50% of the time
for the end-to-end work. This time is not only the change
generation itself (the code rewrite), but also finding the places
to migrate, doing reviews and rolling out the changes.

This is notably different from the success metric typically
used in application of generic technologies (such as code
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Fig. 4. The high-level process to land an AI-authored change in the monorepo. We use LLMs extensively in code change creation, and partly in discovery
and validation phases.

completion, where we typically report percent of code written
by AI, or the acceptance rate). We found that while the ratio
of code generated by AI that gets committed is a good proxy
for the time savings in most cases, it does not always capture
all the value. Anecdotal remarks from developers suggest that
even if the changes are not perfect, there is a lot of value
in having an initial version of the changelist already created,
through which developers can quickly find the places where
the changes are needed. Thus, we believe that success should
be assessed based on time saving on the end-to-end work. The
impact on code quality is also important. Currently the quality
is assured through the manual review process of the code -
same as for purely human-generated code. Whether there is a
long-term impact on quality remains to be seen.

In all of our case studies, the speed-up provided by the
AI on the code changes alone was higher, but we believe
that anchoring the success metric on the whole development
journey offers a clearer impact goal and is aligned with
the business outcome, rapid completion of the migrations.
For fully completed migrations, we were able to estimate
accurately the time savings (mostly based on historical data),
while for some of the ongoing ones (such as Joda time API
migration, Section VI) we relied on the expert engineers
estimating a time-saving for a set of changelists created by
the tools and we extrapolated from that.

IV. INT32 TO INT64 ID MIGRATION

We previously shared information about this work in this
blog post [18].

Google Ads has dozens of numerical unique “ID” types
used as handles — for users, merchants, campaigns, etc. —
and these IDs were originally defined as 32-bit integers in C++
and Java. But with the current growth in the number of IDs,
we expect them to overflow the 32-bit capacity much sooner
than originally expected.

Although some migration was done initially manually, we
decided to employ an LLM-powered code migration flow,
described below, to accelerate the work. There are several
challenges related to the code changes that needed addressing:

• The IDs are often defined as generic numbers (int32_t
in C++ or Integer in Java) and are not of a unique,
easily searchable type, which makes the process of find-
ing them through static tooling non-trivial.

• There are tens of thousands of code locations across
thousands of files where these IDs are used.

• Tracking the changes across all the involved teams would
be very difficult if each team were to handle the migration
in their data themselves.

• Changes in the class interfaces need to be taken into
account across multiple files.

• Tests need to be updated to verify that the 64-bit IDs are
handled correctly.

• Constants are sometimes expressed as C++ macros. IDs
are occasionally serialized as text, away from where they
are used.

The full effort, if done manually was expected to require
hundreds of software engineering years and complex cross-
team coordination. The approach Google has had for such
cases is to have a central team that drives the migration. It
is what we did in this case as well and devised the following
workflow:

1) An expert engineer from Ads finds the ID they want
to migrate and, using a combination of Code Search,
Kythe [16], and custom scripts, identifies a (best effort)
superset of files and locations to migrate.

2) An LLM-based migration toolkit, triggered by an expert,
runs autonomously and produces verified changes that
only contain code that passes unit tests. When necessary,
tests are also updated to reflect the changes to the code.

3) The same engineer then manually checks the change and
potentially updates files where the model failed or made
a mistake. The changes are then sharded and sent to
multiple reviewers who own the part of the codebase
affected by the change.

We found that 80% of the code modifications in the landed
CLs were fully AI-authored, and the rest were human-authored
or edited from the AI suggestions. We calculate the percentage
of AI-authored code by tracking the state of the changelists
(similar to pull requests in git). The first version (known
internally as snapshot) of the changelist is the one generated
by the LLM-powered tooling. The version actually committed
to the repo is compared to this and a per-character difference
is calculated.

We discovered that in most cases, the human needed to
revert at least some changes the model made that were either
incorrect or not necessary. Given the complexity and sensitive
nature of the modified code, effort has to be spent in carefully
rolling out each change to users. This observation led to
further investment in LLM-driven verification (described later)
to reduce this burden.
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The total time spent on the migration was reduced by
an estimated 50% as reported by the engineers doing the
migration, when compared to a similar exercise carried out
without LLM assistance. In this calculation, we take into
account the time needed to review and land the changes. There
was also a significant reduction in communication overhead,
as a single engineer could generate all necessary changes.

We will now discuss some detail about each of the steps in
the workflow for this migration:

1) Finding code locations to modify: In this migration, the
main target is usually one or more fields defined in a protocol
buffer[20] - a standard mechanism for serializing structured
data. We use a variety of technique to identify the final files
and code lines to modify.

First, we start with the manual identification of the pro-
tocol buffer fields for an ID, called a “seed”. Then, we use
Kythe [16] to find references to the seed in the entire Google
codebase, called “direct references”. This process is repeated
3 times where references-to-references are also automatically
found in a bread-first-search fashion, where each level is
farther away from the initial seed.

The result of this Kythe search is a superset of files and lines
that may potentially need to be modified. We filter this superset
to identify the locations to be modified accurately, before the
files are passed to our LLM for the actual modification. To
improve accuracy, we use various pluggable and extensible
strategies that help decide whether a specific location needs
to be migrated. First, we pass the locations through regular
expressions to identify if production code contains any cast-
ing in different languages, e.g. (int) seed.getLong().
Such locations are tagged as to-be-migrated. Then, for test
code, we check whether values passed as IDs are larger than
the 32-bit space, e.g. seed.setLong(5L). When they fit
the 32-bit space, they are marked as to-be-modified too, since
we want to execute tests with values larger than the maximum
32-bit value.

The remaining locations are passed through more filters
that eliminate false positives with additional techniques. One
approach is to parse the source code to check whether a given
location contains an actual call relevant to the seed or not.
As an example, a method/function definition may have been
found with the Kythe references search, but usually function
definitions are not relevant places to be changed for test files.
Such locations are marked as irrelevant.

At the end of these filters, the remaining locations are
kept to be passed to our LLM for migration. The human
involvement in the process decreased during the development
of the workflow but still remained high due to the prevalence
of ambiguous locations to change.

2) Code migration flow: To generate and validate the code
changes we leverage a version of the Gemini model that we
fine-tuned on internal Google code and data.

Each migration requires as input:
• A set of files and the locations of expected changes: path

+ line number in the file.
• One or two prompts that describe the change.

• [Optional] Few-shot examples to decide if a file actually
needs migration.

Fig. 5. Example execution of the multi-stage code migration process.

We have developed a code migration toolkit that is used in
the solutions described in this work. The toolkit is versatile
and can be used for code migrations with varying requirements
and outputs. All seed file change locations are provided by
the user and collected through processes similar to the ones
described above. The migration toolkit automatically expands
this set with additional relevant files that can include: test files,
interface files, and other dependencies. This step uses symbol
cross-reference information.

In many cases, the set of files to migrate provided by
the user is not perfect. It is not unusual for some files to
have already been partially or completely migrated. Thus, to
avoid redundant changes or confusing the model during edit
generation we provide the model with few-shot examples and
ask it to predict if a file needs to be migrated.

The edit generation and validation step is where we have
found the most benefit from an ML-based approach. Our
LLM was trained following the DIDACT [17] methodology
on data from Google’s monorepo and processes. At inference
time, we annotate each line where we expect a change is
needed with a natural language instruction as well as a general
instruction for the model. In each model query, the input
context contains one or multiple files related to each other,
for example implementation files with headers, tests, interface
declarations etc.. Fig 5 shows how related files are grouped
together automatically and their combined changes are later
added to the set of changes comprising a ’run’ of the toolkit.
The model predicts differences (diffs) between the files where
changes are needed and will also change related sections so
that the final code is correct. The instructions to the model
are relatively simple (see Fig 6), but remind the model to also
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{id} should be of type int64_t.
Update the tests to reflect a large id.
Initialize the {id}s with values larger than 10000000000.
If necessary add new test parameters with large ids.
If previous id was negative, new value should be negative.

Fig. 6. Prompt for int32 to int64 migration. The model makes the change
across all the file(s) even without being asked.

update the test files. Examples of consistent results can be seen
in Fig 7 and Fig 8.

This last capability is critical to increase migration velocity,
because the generated changes might not be aligned with the
initial locations requested, but they will solve the intent. This
reduces the need to manually find the full set of lines or
files where changes are needed and is a big step forward
compared to purely deterministic change generation based on
AST modifications.

Fig. 7. In the example above we prompt the model to only update the
constructor of the class where the type has to change. In the predicted unified
diff, the model correctly also fixes the private field and usages within the
class.

Fig. 8. The model updated also the test file with an integer that is larger than
32-bit.

Different combinations of prompts yield different results
depending on the input context. In some cases providing too
many locations where one might expect a change results in
worse performance than specifying a change in just one place
in the file and prompting the model to apply the change to the
file holistically.

As we apply changes across dozens and potentially hun-
dreds of files, we implement a mechanism that generates
prompt combinations that are tried in parallel for each file

group. This is similar to a pass@k [4] strategy where instead of
just inference temperature we modify the prompting strategy.

We validate the resulting changes automatically. The valida-
tions are configurable and often depend on the migration. The
two most common validations are building the changed files
and running their unit tests. Each of the failed validation steps
can optionally run an ML-powered “repair”. The model has
also been trained on a large set of failed builds and tests paired
with the diffs that then fixed them. For each of the build/test
failures that we encounter, we prompt the model with the
changed files, the build/test error and a prompt that requests a
fix. With this approach, we observe that in a significant number
of cases the model is able to fix the code.

As we generate multiple changes for each file group, we
score them based on the validations and at the end decide
which change to propagate back to the final change list (similar
to a pull request in Git). There are different strategies to rank
changes and select the best. Which to use depends on the use
case, commonly a good approach is to provide examples of
the expected diff and score the changes that are closer to the
set of provided examples. Closer can be defined by standard
code/text distance metrics or by querying Gemini asking which
of the changes best matches the given examples.

The process and toolkit described in Sec IV-2 is mostly
generic, and is under in the other migrations exercises that we
present next.

V. JUNIT3 TO JUNIT4 MIGRATION

Large codebases tend to have some parts that begin to fall
behind from the rest, they might use an older version of
a library or API, or a framework that is being deprecated
elsewhere. Google has had a one-version policy for years,
which helps keep every dependency and library as fresh as
possible. Nevertheless as standards change, some migrations
that couldn’t be fully automated tend to take quarters, even
years.

A group of teams at Google had a substantial set of test
files that used the now old JUnit3 library. Updating all of
them manually is a huge investment and although the old
tests are not on the critical path of the development, they
negatively affect the codebase. They are technical debt and
tend to replicate themselves, as developers might inadvertently
copy old code to produce new one.

We needed to make a decisive push to migrate a critical
mass of these tests to the new JUnit4 library. Although for
a human such a migration is relatively simple, doing so with
purely AST-based techniques was deemed infeasible as there
are just too many edge cases.

We used the LLM migration stack (described above) to run
an automatic migration on the old tests. We already had a
list of all the JUnit3 tests in the repository, so running over
all of them was simple. While we modified each test file, the
internal system for Large Scale Changes (LSCs, [26]) split
the resulting changelists into smaller sets that were sent to the
owners of the tests for review. An example change can be seen
in Fig 10.
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You are a frontend software engineer that is an expert
at Java, JUnit3, and JUnit4.
Your work involves upgrading Java unit test files
from JUnit3 to JUnit4.
Convert all provided test files below
from JUnit3 to JUnit4.
Add imports for all the assert methods used
in this file. Here are some tips to keep in mind:

Steps:
1. Change the imports

* Remove imports for anything under ‘junit.framework‘
or ‘junit.extensions‘

* Add ‘import static org.junit.Assert.*‘
2. Remove the base class from the test.
JUnit4-style tests should not
extend ‘junit.framework.TestCase‘
3. It is rarely necessary to have a base class
for JUnit4-style tests.
Often you can write custom rules to share code
4. Annotate the test class with ‘@RunWith(JUnit4.class)‘
5. Annotate the test methods with ‘@Test‘
...

Fig. 9. Excerpt from the JUnit3 to JUnit4 prompt

Fig. 10. Changes required for a case of JUnit3 to JUnit4 conversion.

The version of Gemini that we used was fine-tuned on the
internal Google code base so it already had seen quite some
JUnit4 tests. This allowed us to have a relatively simple set of
prompts that essentially consisted of a list of rules (see Fig 9)
that humans use to do the migration manually.

The updated test files were built and the updated tests ran
again. Any failures were sent again to the model for fixing, as
described in Fig 5.

With this technique we were able to migrate 5,359 files
modifying more than 149,000 lines of code in 3 months. The
bottleneck in the process was the speed at which engineers
could review the changes. We purposefully limited the number
of changes we generate every weak to avoid overwhelming
reviewers. At the end of the migration ∼87% of the code
generated by AI ended up committed without any change.

VI. JODA TIME TO JAVA TIME MIGRATION

Some parts of the codebase still use the Joda time library for
Java instead of the standard java.time package. Although the
Java versions within the monorepo are regularly updated, this
dependency remains and is still widespread with thousands of
occurrences. We decided to tackle migrating from Joda time
to standard java.time.

One major challenge in such a migration is that the changes
are not scoped to singular methods but very often require
changes in class public interfaces and fields. The situation

becomes even more complex as we cannot just create a
giant change and update all occurrences - there are thousands
of them. Instead we need to split the work in chunks that
can be reviewed and committed separately. The continuous
availability of code reviewers is also not guaranteed all the
time, so we need to only migrate parts of the codebase where
we have bandwidth to land the changes. Often there are inter-
dependencies between components we want to change and
some other we do not want to touch now. This means we need
to insert conversion functions in the interfaces where two such
components interact and employ the types we want to migrate.

In many cases there is a 1:1 correspondence
between the timekeeping functions and data
structures, for example joda.time.Duration can
be replaced with java.time.Duration and the
constructing functions can be modified so that
instead of joda.time.Duration.millis(), we call
java.time.Duration.ofMillis().

In other cases though there is no direct type trans-
lation possible. For example there is no counterpart to
joda.time.Interval in the standard Java Time API.
Duration has no concept of exact start time. Instead the
guideline was to substitute a joda.time.Interval with a
common.collect.Range<java.time.Instant>. This re-
quires a more involved change in the logic of the functions
and most importantly in the class interfaces that use this type.

All these challenges meant we need a new and more
complex approach to gradually land the migration. We split
the process again in 3 stages: change targeting (also known as
localization), change execution, review and landing.

For the targeting we built a pipeline on top of Kythe [16]
which provides cross-reference information. We start with the
directories (which very roughly correspond to components and
projects) where we have reviewers ready. For each file in such
a directory we build a cross-reference graph showing where
the Joda time types are used and what the dependencies are.
We need answers to several questions:

1) Which files should be migrated together?
2) What is the fan-in/out of the call graph? A widely im-

plemented interface might lead to a change in hundreds
of files.

3) Do the calls ‘escape’ the current component scope we
have set for the set of changes? If yes, we might have
to create transition wrappers to avoid ‘spreading’ the
interface change outside.

To answer these questions we built a clustering solution
through Kythe where we categorize the potential changes. The
cross-references form directed acyclic graphs (DAGs) connect-
ing files. The simplest changes are in files where there are no
modifications needed in an interface - this happens when the
types to change are only used within the implementation of a
class. The call-graphs tend to cluster and we split them into
categories by number of files affected.

The clustering is important to also get the model to make
consistent changes across files. When there is a dependency,
ideally we migrate all files in one prompt. If we split them,
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Remove the usage of the joda.time classes
and instead use the standard java.time
module.
Update all usages of the Joda classes with
their standard counterparts. Import the
correct java.time module classes if needed.

Additional instructions:

* Instant is a drop-in replacement. So if
you see joda.time.Instant, you can easily
just replace it with a java.time.Instant.

* When you see something like new
Instant(Long.MAX_VALUE), that is just
java.time.Instant.MAX

* \new Instant(0)" on the other hand is
just java.time.Instant.EPOCH

* joda.time.Instant’s ctor’s replacement
is java.time.Instant.ofEpochMilli

* joda.time.Instant.getMillis() maps to
java.time.Instant.toEpochMilli()

* Don’t use Instant.now() instead use
Timesource.system().now()

* joda.time.Duration can be replaced with
java.time.Duration.

* Instead of joda.time.Duration.millis(),
call java.time.Duration.ofMillis()

* Instead of joda.time.Duration.getMillis()
call java.time.Duration.toMillis()

* Instead of joda.time.Duration.standardSeconds()
call java.time.Duration.ofSeconds()

* Instead of joda.time.Duration.standardMinutes()
call java.time.Duration.ofMinutes()

* Prefer to use Instant over DateTime unless you
really need to print out or manipulate Dates vs
a specific point in time (eg Instant)

* If you really need joda.time.DateTime, use
java.time.ZonedDateTime as a replacement

* Don’t use common.time.Clock. Use
common.time.TimeSource instead

* Interval is NOT a drop in replacement so
be very careful

* joda.time.Interval can be carefully
replaced by common.collect.Range<java.time.Instant>

* Caveat, joda.time.Interval is closed-open
so when creating the Range<Instant> and you
want 100% compatibility, you need a closed-open
Range.

Never rename functions or completely remove their
implementation.

Fig. 11. Prompt for Joda Time conversion

Gemini effectively would not know, between inference invo-
cations, if the referenced file is migrated or not - it needs to
assume if a direct call is needed or a type conversion. The
alternative is to show the already-migrated file to the model
to avoid inconsistencies. Fortunately, as Gemini offers a huge
context window we can comfortably fit many of the clusters
into the context window. This means we can prompt once for
many files and get the whole cluster migrated. After the code
change we run builds, tests and try to fix any eventual failures.

For the changes themselves, the instructions to the model are
similar to the ones we provide human engineers. See Fig 11.

Gemini has seen enough Joda and java.time code during its
training that we don’t actually have to explain what they are. It
was able to correctly use the right APIs and didn’t hallucinate
wrong parameters or data structures. Fig 12 shows an example
of a correct diff generate for the migration.

The only additional context, apart from the files to migrate
we offer, is an auxiliary class with conversion functions that
sometimes need to be used. They are specific to the internal

Google code and the model should consistently use them
(instead of writing new ones).

Fig. 12. Example of a Joda time to Java time migration

This approach led us to successfully migrate many smaller
and medium size file clusters. This migration is still ongoing,
and we have challenges to solve. Sometimes, huge clusters
arise and require us carefully ordering the changes and syn-
chronizing with code reviewers. We need to improve some
of the call-graph logic as connections are sometimes missed
when components depend on each other through Guice[13].
Another challenge is the presence of switch statements that
use dynamic typing. We are migrating our pipeline to support
Guice dependencies though, which will cover the majority of
the references.

Our current estimate shows that we are able to save ∼89%
of the time it would have taken humans to do the change in
the small clusters. The number is calculated across multiple
changes where human experts (team technical leads) have
compared their experience with the AI-powered tooling to
the previous purely-manual approach. An additional time-
saver mentioned by engineers is that the current algorithm
helps them quickly identify all places and dependencies to
update. Even if some errors were made by the toolkit, they
are relatively trivial to fix.

VII. CLEANUP OF EXPERIMENTAL CODE

Google uses thousands of runtime experiments running
continuously to improve its products. At its most simplified, an
experiment is a flag in code that receives some value from the
outside (the experiment execution engine). The code logic is
branched according to the value of the flag or is directly used
somewhere as a parameter. After an experiment was either
successful or not, the code related to it needs to be cleaned -
either become the default code path or get removed entirely.

Sometimes, due to their large number, experiments become
stale: an experiment might become abandoned or permanently
rolled out, or its value effectively becomes a constant, but the
flag and the associated code remains even though no branching
is needed anymore. This constitutes dead code and technical
debt. The experimentation engine tracks all experiments and
flags across Google and can list all the stale flags - defined
as flags whose value has not changed over a long period of
time. Developers need to clean the code associated manually
though.
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Cleaning all these flags is time consuming and we decided
to use AI to accomplish the job.

The task requires:
1) Finding the code locations where the flag is referenced
2) Deleting the code references to the experimental flag
3) Simplifying any conditional expressions that depend on

the experimental flag
4) Cleaning any now dead code
5) Updating the tests, often deleting now useless test
Steps 2), 3), 4) could be implemented with an AST-based

approach and even 5) could be approximated with a heuristic.
In fact Google already had an AST-based tool for C++ but we
discovered that it was missing some cases and the ambition
was to build something that is language-agnostic.

A. Flag discovery and targeting

Step 1) is often simple - the flags are declared in config-
uration files and manifest themselves in code through getters
whose symbol names are derived from the name of the flag
in a well-known form. We use Code Search for finding where
the flag is used in the code. One challenge is that in test files,
the flag is not necessarily used with its exact getter name - in
fact it is not extracted from the experiments system at all, but
is a developer-written fake passed to the focal code. Software
engineers use local variables with names that roughly align
with the experiment flag name, but are not the same - in this
case Code Search will not find the test flag.

We could use cross-references information to try to map
the uses of the experiment flag between the focal function
and the test variable (often passed to a constructor). Human
intuition however is enough to easily identify the test flag
name when looking at the test and implementation files, so
we decided to use the LLM to tell us which test flag we need
to delete. Fig 14 illustrates how the LLM tagged it through
adding a comment. Through a Code Search query we know
all the implementation files where the flag is used and due
to the way tests are organized in Google, we also know all
the corresponding test files. We pass all these files and the
instructions below (see Fig 13) to the model to discover which
test flags to delete.

Given the strong code change capabilities of Gemini, we
decided to ask it to put a comment on the test flag. Then we
use this data to guide the model in a second step that actually
deletes the code across the implementation and test files (see
Fig 15).

B. Code cleanup

The code changes follow a similar pattern as the other
migrations. The input to the model is:

• Set of files and the symbol name of the flag to clean and
the value of the flag

• Set of test files to clean the test flags to clean
• Instructions on how to execute the cleanup
The value of the flag is critical as we effectively need to

substitute where it is used by that constant.

You are a software engineer trying to mark
an experiment parameter for colleagues.
Your main task is to add comments the Flag
in the test file that correspond to the
runtime usage of the flag in the
implementation file.
1. You are interested in the parameter
{PARAMETER_TO_DELETE} in the experiment
{EXPERIMENT_NAME}
2. In the test file add a comment with
the parameter {PARAMETER_TO_DELETE} name
to the test flags that corresponds to it.
3. The test flag that corresponds is one
that has a similar name AND is used in
methods where the original param is
expected.
4. For example a method that takes
{PARAMETER_TO_DELETE} in the implementation
file might take the flag to mark in the
test file.
5. Only add a comment in all lines where
the flag you identified to corresponds to
the parameter {PARAMETER_TO_DELETE} is
used in the Test file.

Fig. 13. Prompt for unused flag cleanup

Fig. 14. The model discovers and ’tags’ a test flag related to the implemen-
tation one we would want to delete

Given the large context size of Gemini we are able to pack
all the usages of a flag in one query to the model, even
though some files in the Google monorepo are very large.
The implementation and test file are both visible together to
the model so that it can make a consistent change across both
of them. After the code is cleaned we run additional validations
to make sure all the instances were deleted, the code builds
and tests pass.

The implementation files’ updates are of high quality and
Gemini can successfully delete functions that are now dead
code (because they were only used in a branch that is now
deleted.)

The most challenging part is cleaning up the right tests. The
model correctly deletes the tests where the flag is set to values
that are now impossible. However in some cases the tests are
not ‘pure’ and they might test multiple flags in the same unit
test or some interaction between their values. Such cleanups
are very difficult for humans as well. In these cases we rely
on the test failing and the model attempting a fix or leave to
the human reviewers to do a final fix. Addressing these unit
tests cleanup is a future area of research for the team.

VIII. DISCUSSION AND TAKEAWAYS

A. LLMs for Code Modernization

LLMs offer a significant opportunity for assisting modern-
izing and updating large codebases. They come with a lot
of flexibility, and thus, a variety of code transformation tasks
can be framed in a similar workflow and achieve success. This
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Fig. 15. The first large block with red background is a direct flag dependency,
but the second large block with red background is dependency on removal of
the first block.

approach has the potential to radically change the way code
is maintained in large enterprises. Not only can it accelerate
the work of engineers, but make possible efforts that were
previously infeasible due to the huge investment needed.
Unfinished migrations tend to continuously slow down teams
even if they are not working directly on them, they confuse
new developers with obsolete patterns, and require additional
cognitive load. Landing migrations faster has a wide reaching
benefits beyond the actual technical code change.

B. LLM+AST, better together

Many code migrations can be split into discrete steps and
each step can either be LLM generation, LLM introspection,
but also use traditional methods like AST-based techniques
and even grep-like searches. We discovered that LLM planning
capabilities are often not needed and add a layer of complexity
that should be avoided when possible.

AST-based tooling has the advantage to be ‘always cor-
rect’ and not suffer from model version changes or prompt
change fluctuations. For example simple mistakes of the model
like adding unnecessary comments or changing methods it
shouldn’t, can easily be checked through an AST parser
diffing the before/after of the file’s AST nodes. Working with
smaller and better defined LLM-powered prompts increases
the reliability of the results while reducing debugging efforts
and the need to tune the prompts. An additional benefit is
that the steps that don’t rely on LLMs tend to be much
cheaper computation-wise. Although the cost per token for
predictions has steadily decreased, migrations often require
touching thousands of files and the costs might quickly add
up.

C. Divide and Conquer

Simpler sub-tasks allow the developer building the migra-
tion workflow to iterate faster and ‘divide and conquer’ the
problem. In the toolkit (see Sec IV-2) described in the paper,
different engineers are in charge of tuning and optimizing a
specific step that is then used for multiple migrations. For
example the build fixing step is ubiquitous and improving it
leads to economies of scale.

When the model output is not perfect, leaning into valida-
tion and verification through multiple steps can ‘recover’ the
change and lead to a successful workflow. In our observations,
the LLMs are very good at fixing a well defined problem which
complements their first attempt at a change.

D. Landing the changes: a human process

Although LLMs can lead to a significant time save for the
change generation itself, additional tooling will be needed
to further reduce or accelerate human involvement. Code
reviews and change rollouts still require a human operator and
can quickly become bottlenecks in the larger code migration
process. We needed to slow down some of the migration work
to avoid overwhelming the teams that had to do the reviews
and to make sure that the rollouts happened in a gradual and
responsible way. Assisting the human developers in the tasks
adjacent to the actual code changes in a migration is an area
we are actively exploring.

E. Metrics and evaluation

A lot of work in the ML and applied ML communities
focuses on evals, typically in which the model’s performance
is measured on isolated, hermetic tasks such as “generate
Python code to . . . ”. While these measure some aspects of
model goodness, in the end, what matters is how model-level
performance translates to business level outcomes. Bad model-
level performance can compromise business-level outcomes,
but good model-level performance does not guarantee good
business-level outcomes, since the ML model is only one part
of a complex transformation task. We are constantly measuring
ourselves at the level of business-level outcomes.

F. Training and adoption

The use of generative AI widely, with bespoke techniques,
comes with a hidden cost: that of having to train a number of
engineers in the use of these techniques. Building elaborate
tooling to completely hide the use of AI behind tools is
expensive, and it creates a technical obligation to now maintain
that tooling, which is used by a relatively small number
of engineers. (By comparison, generic technologies such as
code auto-completion are easy to amortize over a much larger
population.)

G. Custom vs generic models

Similarly to the above point, while fine-tuned models can
be useful, they also come with a cost, and a company needs
to constantly assess the “area under the curve” of investing in
custom models for better outcomes, versus working with out
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of the box models. We have currently used fine-tuned models
for generating edits and fixing build failures.

IX. RELATED WORK

Repository-level changes with planning: The need to
be able to perform repository-level code changes is the key
challenge of code migrations. For code migrations structural
relationships across the repository are important LLMs to cap-
ture but the whole repository does not fit into the prompt. One
approach discussed by Bairi et al. [2] is framing the task as a
multi-step planning problem, including a static dependency
analysis, edit-relevance analysis (to determine the relevant
context for the LLM), repairs on errors from validations in
the previous step and adaptive plan generation. Jiang et al.
presented in [14] how LLMs can be used to generate the plan.
Further relevant literature includes [29] employing look-ahead
planning, [12] with a theoretical discussion. There are various
demos of agent-based approaches [6, 28, 30], e.g. giving the
agent access to the editor, terminal and web. Although all
these planning approaches showed promise to capture complex
relationships and flexibly adapt during the execution, it is not
clear how well the methods generalize and the complexity of
the system is high.

Repository-level changes without planning: Xia et al. [27]
challenges above assumptions of planning being needed. In a
simpler setup of a sequence of localizing the next relevant
edit locations and repairing based on validation, better quality
results are achieved on SWEBench [22] compared to more
involved approaches with planning. Also, in typical setup such
an approach is more cost-effective. Similarly, approaches in
this paper rely on agent-less techniques.

Code migrations: There is prior art in using LLMs for
language translation [8] and code refactoring [21]. However,
those approaches do not reach high enough quality to become
useful yet. Amazon recently shared a product for code migra-
tions using agents [1]. In [24] the team explores the human-
AI partnership in the product: the shortcomings of LLMs are
attempted to be compensated by offering the human the ability
to easily correct intermediate steps of code edits by the LLM.

X. CONCLUSION AND FUTURE WORK

We intend to build upon this success and expand the portfo-
lio of programs leveraging LLM capabilities from a handful to
several across multiple teams in Ads and other product areas
across Google. Scaling AI-assisted migrations through easy-
to-use workflows and high confidence AI recommendations
will be critical to expanding adoption.

We also plan to expand the portfolio of use cases from code
migration to creating agents that can automate triaging, miti-
gating and resolving complex system escalations that will help
the business run more smoothly with minimal interruptions.
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[10] Alexander Frömmgen and Lera Kharatyan. Resolving
code review comments with ML. 2023. URL: https :
/ / research . google / blog / resolving - code - review -
comments-with-ml/.
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